曲线x^2/6-y^2/2=1的顶点为(±3,0),焦点为(±2根号2,0),
设以双曲线的顶点为焦点,焦点为顶点的椭圆E的方程为x^2/a^2+y^2/b^2=1,a>b>0,
则a^2=6+2=8,c^2=6,
∴椭圆E的方程为x^2/8+y^2/2=1
(2)依题意得D点的坐标为(-2,-1),
且D点在椭圆E上,直线CP和DP的斜率KCP和KDP均存在,设P(x,y),
则kCP=y-1/x-2,kDP=y+1/x+2,
∴kCP•kDP=(y-1/x-2•)(y+1/x+2)=(y^2-1)/(x^2-4)
∵点Q在椭圆E上,∴x^2=8-4y^2,kCP•kDP=(y^2-1)/(x^2-4)=-1/4