你前面求的
P(B|A)=(N+1)/(N+M+1) 不应该在乘以个P(A)
P(B|A)表示的是甲取得白球的情况下,乙取的白球的概率,是条件概率
但是你求的应该是甲取得白球且乙取得白球的概率,是P(AB)
那么求P(B)的时候的贝叶斯全概率公式也用错了
P(B)=P(B|A)*P(A)+P(B|A拔)*P(A拔)
所以
P(A|B)=P(AB)/P(B)
=[n/(m+n)]*[(N+1)/(M+N+1)/[nN+n+mN]/[(m+n)*(M+N+1)]
=[nN+n]/[nN+n+nM]
你前面求的
P(B|A)=(N+1)/(N+M+1) 不应该在乘以个P(A)
P(B|A)表示的是甲取得白球的情况下,乙取的白球的概率,是条件概率
但是你求的应该是甲取得白球且乙取得白球的概率,是P(AB)
那么求P(B)的时候的贝叶斯全概率公式也用错了
P(B)=P(B|A)*P(A)+P(B|A拔)*P(A拔)
所以
P(A|B)=P(AB)/P(B)
=[n/(m+n)]*[(N+1)/(M+N+1)/[nN+n+mN]/[(m+n)*(M+N+1)]
=[nN+n]/[nN+n+nM]