解题思路:(1)连接OD,由切线的判定定理可证得OD⊥BD,则BD是⊙O的切线;
(2)连接CD,由垂径定理可得:CD=CN=10,在直角三角形ADC中,由勾股定理可求出AD的长.
(1)证明:连接OD,
∵∠A=∠B=30°,OD=OC,
∴∠A=∠ADO=30°,
∴∠DOC=60°,
∴∠ODB=90°,
即OD⊥BD,
∴BD是⊙O的切线;
(2)连接CD,
∵DN⊥AB,
∴弧DC=弧CN,
∴CD=CN=10,
∵AC是直径,
∴∠ADC=90°,
∵∠A=30°,
∴AC=20,
∴AD=
202−102=10
3.
点评:
本题考点: 切线的判定;勾股定理;垂径定理.
考点点评: 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了垂径定理和勾股定理.