求数列2+a,5+a²,8+a³,.(3n-1)+a^n的前几项和

1个回答

  • let

    S = 1.a^1+2.a^2+.+n.a^n (1)

    aS = 1.a^2+2.a^3+.+n.a^(n+1) (2)

    (2)-(1)

    (a-1)S = n.a^(n+1) - ( a+a^2+...+a^n)

    = n.a^(n+1) - a( a^n-1)/(a-1)

    S = [1/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)]

    bn= 3n-1

    cn = a^n

    dn=bn + cn

    = (3n-1) .a^n

    = 3( n.a^n) - a^n

    Sn =d1+d2+...+dn

    = 3S - a(a^n-1)/(a-1)

    =[3/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)] - a(a^n-1)/(a-1)

    数列2+a,5+a²,8+a³,.(3n-1)+a^n的前几项和

    = Sn

    =[3/(a-1)][n.a^(n+1) - a( a^n-1)/(a-1)] - a(a^n-1)/(a-1)