已知实数x,y满足2的(x+2)次幂加上4的y次幂等于2 的(x+2y+1)次幂,求2的x次幂+4的y次幂的最小值

2个回答

  • 2^(x+2)+4^y=2^(x+2y+1)得4*2^x+4^y=2*2^x*4^y,于是有

    4^y=4*2^x/(2*2^x-1)=2+1/(2^x-1/2)>0

    得2^x-1/2>0或2^x-1/2-1.后者不可能.于是x>-1.

    令t=2^x+4^y,则4^y=t-2^x,于是有

    4*2^x+t-2^x=2*2^x*(t-2^x)得

    t=[3*2^x+2*(2^x)^2]/(2*2^x-1)

    令2^x=m>2^(-1)=1/2,则有

    t=(3m+2m^2)/(2m-1)

    =m+2+1/(m-1/2)=(m-1/2)+1/(m-1/2)+5/2

    因m>1/2,故m-1/2>0,故

    t=2^x+4^y=m+2+1/(m-1/2)=(m-1/2)+1/(m-1/2)+5/2≥2√[(m-1/2)*1/(m-1/2)+]+5/2=9/2

    当且仅当(m-1/2)=1/(m-1/2),即2^x=m=3/2(m=-1/2舍去)时,2^x+4^y取最小值9/2.

    此时,x=log(2)(3/2),y=log(4)(3)