Sn=3[Sn-S(n-1)]+1
2Sn=3S(n-1)-1
2Sn-2=3S(n-1)-3
所以(Sn-1)*[S(n-1)-1]=3/2
Sn-1是等比数列,q=3/2
S1=a1
S1=3S1+1
S1=-1/2
S1-1=-3/2
Sn=(-3/2)*(3/2)^(n-1)=-(3/2)^n
S(n-1)=-(3/2)^(n-1)
an=Sn-S(n-1)=(-3/2)*(3/2)^(n-1)-[-(3/2)^(n-1)]=-(1/2)*(3/2)^(n-1)
Sn=3[Sn-S(n-1)]+1
2Sn=3S(n-1)-1
2Sn-2=3S(n-1)-3
所以(Sn-1)*[S(n-1)-1]=3/2
Sn-1是等比数列,q=3/2
S1=a1
S1=3S1+1
S1=-1/2
S1-1=-3/2
Sn=(-3/2)*(3/2)^(n-1)=-(3/2)^n
S(n-1)=-(3/2)^(n-1)
an=Sn-S(n-1)=(-3/2)*(3/2)^(n-1)-[-(3/2)^(n-1)]=-(1/2)*(3/2)^(n-1)