2·a(n) = 2[Sn - S(n-1)] = (n+1)an - n·a(n-1)
∴(n-1)an = n·a(n-1) ,
∴an/[a(n-1)] = n/(n-1) ,. ,a3/a2 = 3/2 ,a2/a1 = 2/1 ,将上述式子相乘:an/a1 = n ,∴an = n·1 = n ,
即:{an}是以1为首项、1为公差的等差数列 .
2)
(n+1)^2-1=(n+2)*n,
得wn=1/(1*3)+.1/(n+2)*n=1/2*(1-1/3+1/2-1/4+1/3-1/5.1/n-1/(n+2))
=3/4-1/2[1/(n+1)+1/(n+2) ]