n>=2时
an=(n-1)/(n+1) a(n-1)
=[(n-1)/(n+1)]*[ (n-2)/n] a(n-2)
=[(n-1)/(n+1)]*[(n-2)/n ]*[(n-3)/(n-1) ]a(n-2)
=[(n-1)/(n+1)]*[(n-2)/n ]*[(n-3)/(n-1) ]*.*[(4-1)/(4+1)][(3-1)/(3+1)][(2-1)/(2+1)]a1
=(3-1)(2-1)/[(n+1)(n)]*(1/2)
=1/[n(n+1)]
n=1时 a1=1/2=1/[(1)(1+1)]
所以对正自然数n
an=1/[n(n+1)]