为什么偏导数存在,不一定可微?但是偏导数不连续也有可能是可微的,也就是说偏导数连不连续都有可能是可微的。书上没写这句话。

3个回答

  • 对于一元函数来说,可导和可微是等价的,而对多元函数来说,偏导数都存在,也保证不了可微性,这是因为偏导数仅仅是在特定方向上的函数变化率,它对函数在某一点附近的变化情况的描述是极不完整的.

    1,偏导数存在且连续,则函数必可微!

    2,可微必可导!

    3,偏导存在与连续不存在任何关系

    其几何意义是:z=f(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量!

    主要全微分形式的不变性做题时候的应用...