解题思路:(1)由程序框图可得:执行循环第一次i=2,f(x)=x+2.执行循环第二次i=3,f(x)=(x+2)x+3=x2+2x+3,依此类推,执行第三次运行结束,即可得出;
(2)由(1)的规律直接得出f(x)=x10+2x9+3x8+…+10x+11,故x10+2x9+3x8+…+10x+11=
a
10
(x−1
)
10
+
a
9
(x−1
)
9
+…
a
1
(x−1)+
a
0
,令x=1,即可得出a0.
由f(x)=[(x-1)+1]10+2[(x-1)+1]9+…+10[(x-1)+1]+11═
a
10
(x−1
)
10
+
a
9
(x−1
)
9
+…
a
1
(x−1)+
a
0
,比较可得a8=C102+2C91+3C80
(1)由程序框图可得:执行循环第一次i=2,f(x)=x+2.
执行循环第二次i=3,f(x)=(x+2)x+3=x2+2x+3
执行循环第三次i=4,f(x)=x3+2x2+3x+4,运行结束.
∴f(x)=x3+2x2+3x+4.
(2)f(x)=x10+2x9+3x8+…+10x+11,
x10+2x9+3x8+…+10x+11=a10(x−1)10+a9(x−1)9+…a1(x−1)+a0
令x=1,得a0=1+2+…+11=
11×(1+11)
2=66
f(x)=[(x-1)+1]10+2[(x-1)+1]9+…+10[(x-1)+1]+11
═a10(x−1)10+a9(x−1)9+…a1(x−1)+a0,
∴a8=C102+2C91+3C80=66.
点评:
本题考点: 程序框图.
考点点评: 本题考查了循环结构的功能、二项展开式的性质及应用,属于难题.