f(x)=x^2(ax-3)
f'(x)=2x(ax-3)+ax^2;
g(x)=f(x)+f'(x)
=x^2(ax-3)+2ax^2-6x+ax^2
=ax^3+3ax^2-3x^2-6x.
g'(x)=3ax^2+(6a-6)x-6
根据题意,x∈[0,2],在x=0处取得最大值,说明g'(x)的对称轴x=(1-a)/a>=2,所以:
a的取值范围:
0
f(x)=x^2(ax-3)
f'(x)=2x(ax-3)+ax^2;
g(x)=f(x)+f'(x)
=x^2(ax-3)+2ax^2-6x+ax^2
=ax^3+3ax^2-3x^2-6x.
g'(x)=3ax^2+(6a-6)x-6
根据题意,x∈[0,2],在x=0处取得最大值,说明g'(x)的对称轴x=(1-a)/a>=2,所以:
a的取值范围:
0