已知:x^(y²)+y²lnx=4
即: e^[lnx^(y²)]+y²lnx=4
即: e^[y²×lnx]+y²lnx=4
两边求导得到:
e^[(y²)lnx]×【2y×dy/dx×lnx+y²/x】+2ydy/dx×lnx+y²/x=0
x^(y²)×【2y×dy/dx×lnx+y²/x】+2ydy/dx×lnx+y²/x=0
解得:
dy/dx=-y²(1+x^y²)/2xy(x^y²+1)lnx = -y/2xlnx
已知:x^(y²)+y²lnx=4
即: e^[lnx^(y²)]+y²lnx=4
即: e^[y²×lnx]+y²lnx=4
两边求导得到:
e^[(y²)lnx]×【2y×dy/dx×lnx+y²/x】+2ydy/dx×lnx+y²/x=0
x^(y²)×【2y×dy/dx×lnx+y²/x】+2ydy/dx×lnx+y²/x=0
解得:
dy/dx=-y²(1+x^y²)/2xy(x^y²+1)lnx = -y/2xlnx