已知椭圆x²/9+y²/3=1,直线y=kx-2交椭圆于A,B两点,有一点P(0,1),PA=PB,

1个回答

  • x^2/9 + y^2/3=1,即x^2+3y^2-9=0

    将y=kx-2代入得:x^2+3(kx-2)^2-9=0

    (3k^2+1)x^2-12kx+3=0

    x1+x2=12k/(3k^2+1)

    P(0,1)

    令A(x1,y1),B(x2,y2)

    PA^2=x1^2+(y1-1)^2,PB^2=x2^2+(y2-1)^2

    |PA|=|PB|,PA^2=PB^2

    x1^2+(y1-1)^2=x2^2+(y2-1)^2

    (x1+x2)(x1-x2)+(y1+y2-2)(y1-y2)=0

    y=kx-2

    (x1+x2)(x1-x2)+(kx1+kx2-6)(kx1-kx2)=0

    (x1-x2){(x1+x2)+k^2(x1+x2)-6k} = 0

    A,B不在y轴上,所以x1-x2≠0

    ∴(x1+x2)+k^2(x1+x2)-6k = 0

    (k^2+1)(x1+x2)-6k=0

    (k^2+1)*12k/(3k^2+1)-6k=0

    12k^3+12k-18k^3-6k=0

    6k^3-6k=0

    k(k+1)(k-1)=0

    k=0时,与椭圆无交点

    ∴k=-1,或1

    直线方程y=-x-2,或y=x-2