∫cscxdx=∫dx/sinx=∫(sinx dx)/sin²x=∫d(cosx)/(cos²x-1)
=(1/2)∫d(cosx-1) /(cosx-1)-(1/2)∫d(cosx+1) /(cosx+1)
=(1/2)ln(1-cosx)-(1/2)ln(1+cosx)+C
=ln√[(1-cosx)/(1+cosx)]+C;
∫cscxdx=∫dx/sinx=∫(sinx dx)/sin²x=∫d(cosx)/(cos²x-1)
=(1/2)∫d(cosx-1) /(cosx-1)-(1/2)∫d(cosx+1) /(cosx+1)
=(1/2)ln(1-cosx)-(1/2)ln(1+cosx)+C
=ln√[(1-cosx)/(1+cosx)]+C;