设首项为a1,d=1
前n项和为Sn=na1+n(n-1)d/2=na1+n(n-1)/2
an=a1+(n-1)d=a1+n-1
limSn/an×an+1=lim[na1+n(n-1)/2]/(a1+n-1)(a1+n-1)+1
=lim[a1/n+1/2-1/(2n)]/[(a1/n+1-1/n)^2+1/(n^2)]
=1/2
设首项为a1,d=1
前n项和为Sn=na1+n(n-1)d/2=na1+n(n-1)/2
an=a1+(n-1)d=a1+n-1
limSn/an×an+1=lim[na1+n(n-1)/2]/(a1+n-1)(a1+n-1)+1
=lim[a1/n+1/2-1/(2n)]/[(a1/n+1-1/n)^2+1/(n^2)]
=1/2