f(x)=2Cosx(Sinx-Cosx)+1
=2sinxcosx-2(cosx)^2+1
=sin2x-cos2x
=√2sin(2x-π/4)
(1) 最小正周期为π
(2)值域为[-√2,√2]
(3)x∈[π/8,3π/4]
则2x-π/4∈[0,5π/4]
因此sin(2x-π/4)∈[-1/√2,1]
f(x)∈[-1,√2]
f(x)最大值为√2,最小值为-1
注:√2表示根号2
f(x)=2Cosx(Sinx-Cosx)+1
=2sinxcosx-2(cosx)^2+1
=sin2x-cos2x
=√2sin(2x-π/4)
(1) 最小正周期为π
(2)值域为[-√2,√2]
(3)x∈[π/8,3π/4]
则2x-π/4∈[0,5π/4]
因此sin(2x-π/4)∈[-1/√2,1]
f(x)∈[-1,√2]
f(x)最大值为√2,最小值为-1
注:√2表示根号2