因为当x→0时,分子分母均趋向于有限实数,所以代入即可
lim[x→0] (x^2+1)/(2x^2+1)
= (0^2+1)/(2×0^2+1)
= 1/1
= 1
若是x→∝,则分子分母均趋向于正无穷大,此时分子分母需要同时除以x的最高次幂
lim[x→∝] (x^2+1)/(2x^2+1)
= lim[x→∝] (1+1/x^2)/(2+1/x^2)
= (1+0)/(2+0)
= 1/2
因为当x→0时,分子分母均趋向于有限实数,所以代入即可
lim[x→0] (x^2+1)/(2x^2+1)
= (0^2+1)/(2×0^2+1)
= 1/1
= 1
若是x→∝,则分子分母均趋向于正无穷大,此时分子分母需要同时除以x的最高次幂
lim[x→∝] (x^2+1)/(2x^2+1)
= lim[x→∝] (1+1/x^2)/(2+1/x^2)
= (1+0)/(2+0)
= 1/2