(1)以AB为x轴,AC为y轴建立坐标系,且设A(0,0),B(b,0),C(0,c).(b^2+c^2=a^2).易知,点P,Q在以点A为圆心,a为半径的圆上,故可设P(acost,asint),Q(-acost,-asint).===>BP=(acost-b,asint),CQ=(-acost-c,-asint).===>BP*CQ=...=--a^2+a(csint-bcost)=-a^2+a^2*sin(t-k)=a^2*[sin(t-k)-1]≤0.===>(BP*CQ)max=0.(sink=b/a,cosk=c/a).易知,此时,PQ⊥BC..
在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ
1个回答
相关问题
-
在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ
-
(平面向量)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值
-
在RT△ABC中,已知斜边BC=2,线段PQ以A为中点,且PQ=4,向量BC与PQ的夹角为60°,求:向量BP·向量CQ
-
如图,在RTΔABC中,已知BC=a,若长为2a的线段PQ以点A为中点,向量PQ与BC的夹角θ取何值时,BP(向量)*C
-
在Rt△ABC中,已知BC(斜边)=a,若长为2a的线段PQ以点A为中点.设向量PQ和向量BC的夹角为α,向量BP与向量
-
在Rt三角形ABC中,已知角A=90度,BC=a,若长为2a的线段PQ以点A为中点,则向量PQ与向量BC的夹角取何值时,
-
如图,在直角三角形ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角O取何值时的值时向
-
如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以A为中点,问PQ与BC的夹角θ取何值时,PQ·BC的值最大?
-
如图,在RT三角形ABC中已知BC=a,若长为2a的线段PQ以点A为中点,问的
-
在△ABC中,点P在BC上,且向量BP=2向量PC,点Q是AC的中点,若向量PA=(4,3),向量PQ=(1,5),则向