因为a-b=√3+√2,b-c==√3-√2,两式相加得到a-c=2√3
(a-b)^2=5+2√6
(b-c)^2=5-2√6
(a-c)^2=12
原式=1/2(a^2+b^2-2ab+a^2+c^2-2ac+b^2+c^2-2bc )
=1/2[(a-b)^2+(b-c)^2+(a-c)^2]
=1/2 (5+2√6+5-2√6+12)
=1/2 x 22
=11
因为a-b=√3+√2,b-c==√3-√2,两式相加得到a-c=2√3
(a-b)^2=5+2√6
(b-c)^2=5-2√6
(a-c)^2=12
原式=1/2(a^2+b^2-2ab+a^2+c^2-2ac+b^2+c^2-2bc )
=1/2[(a-b)^2+(b-c)^2+(a-c)^2]
=1/2 (5+2√6+5-2√6+12)
=1/2 x 22
=11