在△ABC中,三个内角满足∠B-∠A=∠C-∠B,则∠B等于(  )

1个回答

  • 解题思路:先利用三角形内角和定理可得∠A+∠B+∠C=180°,即∠A+∠C=180°-∠B,再由已知条件可得∠A+∠C=2∠B,两个等式联合,可得关于∠B的方程,解即可.

    ∵∠B-∠A=∠C-∠B,

    ∴∠A+∠C=2∠B,

    又∵∠A+∠B+∠C=180°,

    ∴∠A+∠C=180°-∠B,

    ∴2∠B=180°-∠B,

    ∴∠B=60°.

    故选B.

    点评:

    本题考点: 三角形内角和定理.

    考点点评: 本题利用了三角形内角和定理以及解一元一次方程的有关知识.

    三角形三个内角的和等于180°.