y=(3x-1)/(x+1)
所以y'
=[(3x-1)'(x+1)-(3x-1)(x+1)']/[(x+1)^2]
=4/[(x+1)^2]>0
所以y在R上单调递增.
(3x-1)/(x+1)
=[3(x+1)-4]/(x+1)
=3-[4/(x+1)]
∵在定义域中单调递增
且x≠-1
∴y≠3
∴值域为(-∞,3)∪(3,+∞
y=(3x-1)/(x+1)
所以y'
=[(3x-1)'(x+1)-(3x-1)(x+1)']/[(x+1)^2]
=4/[(x+1)^2]>0
所以y在R上单调递增.
(3x-1)/(x+1)
=[3(x+1)-4]/(x+1)
=3-[4/(x+1)]
∵在定义域中单调递增
且x≠-1
∴y≠3
∴值域为(-∞,3)∪(3,+∞