∵an=3^n/(3^n+2)=1-2/(3^n+2)>1-2/3^n
∴a1+a2+……+an
=a1+(a2+……+an)
>3/5+(n-1)-2/9(1-1/3^(n-1))/(1-1/3)
=n-1+4/15+1/3^n
∵n^2/(n+1)=(n^2+n-n)/(n+1)=n-n/(n+1)
=n-1+1/(n+1)
∵当n=1时
4/15+1/3^n=4/15+1/3=9/15
1/(n+1)=1/24/15
1/(n+1)^2/(n+1)
∵an=3^n/(3^n+2)=1-2/(3^n+2)>1-2/3^n
∴a1+a2+……+an
=a1+(a2+……+an)
>3/5+(n-1)-2/9(1-1/3^(n-1))/(1-1/3)
=n-1+4/15+1/3^n
∵n^2/(n+1)=(n^2+n-n)/(n+1)=n-n/(n+1)
=n-1+1/(n+1)
∵当n=1时
4/15+1/3^n=4/15+1/3=9/15
1/(n+1)=1/24/15
1/(n+1)^2/(n+1)