解题思路:此题的两个小题思路是一致的;已知∠QAP=∠BAC,那么这两个等角同时减去同一个角(2题是加上同一个角),来证得∠QAB=∠PAC;而根据旋转的性质知:AP=AQ,且已知AB=AC,即可由SAS证得△ABQ≌△ACP,进而得出BQ=CP的结论.
证明:(1)∵∠QAP=∠BAC,
∴∠QAP-∠BAP=∠BAC-∠BAP,
即∠QAB=∠CAP;
在△BQA和△CPA中,
AQ=AP
∠QAB=∠CAP
AB=AC,
∴△BQA≌△CPA(SAS);
∴BQ=CP.
(2)BQ=CP仍然成立,理由如下:
∵∠QAP=∠BAC,
∴∠QAP+∠PAB=∠BAC+∠PAB,
即∠QAB=∠PAC;
在△QAB和△PAC中,
AQ=AP
∠QAB=∠PAC
AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.
点评:
本题考点: 全等三角形的判定与性质;等腰三角形的性质.
考点点评: 此题主要考查了等腰三角形的性质以及全等三角形的判定和性质;选择并利用三角形全等是正确解答本题的关键.