(1)本题考查等差数列的性质.
a(n+1)=f(an)=an/(3an+1)
1/a(n+1)=1/an+3,1/a1=1.
显然,数列{1/an}是首项为1,公差为3的等差数列.
从而有1/an=1/a1+(n-1)d=3n-2,故an=1/(3n-2).
综上,数列{an}的通项公式为an=1/(3n-2).
(2)本题考查裂项相消求和法.
an×a(n+1)=1/(3n-2)(3n+1)=1/3×(1/(3n-2)-1/(3n+1))
Sn=1/3×(1-1/4+1/4-1/7+...+1/(3n-2)-1/(3n+1))
=1/3×(1-1/(3n+1))
=n/(3n+1)
综上,Sn=n/(3n+1).