x+y=4
y=4-x
代入x^2+y^2-2x+2y+2
=x^2+x^2-8x+16-2x-2x+8+2
=2x^2-12x+26
=2(x-3)^2+8
所以当x=3,y=1时
x^2+y^2-2x+2y+2最小=8
所以原式最小值=2*根号2
x+y=4
y=4-x
代入x^2+y^2-2x+2y+2
=x^2+x^2-8x+16-2x-2x+8+2
=2x^2-12x+26
=2(x-3)^2+8
所以当x=3,y=1时
x^2+y^2-2x+2y+2最小=8
所以原式最小值=2*根号2