解题思路:要证明四边形AEOF是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.
证明:∵点E,F分别为AB,AD的中点
∴AE=[1/2]AB,AF=[1/2]AD,
又∵四边形ABCD是菱形,
∴AB=AD,
∴AE=AF,
又∵菱形ABCD的对角线AC与BD相交于点O
∴O为BD的中点,
∴OE,OF是△ABD的中位线.
∴OE∥AD,OF∥AB,
∴四边形AEOF是平行四边形,
∵AE=AF,
∴四边形AEOF是菱形.
点评:
本题考点: 菱形的判定与性质;三角形中位线定理.
考点点评: 菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.