优先用正割的方法:
令x = 2secz,dx = 2secztanz dz,当x > 2
∫ √(x² - 4) dx
= ∫ √(4sec²z - 4) * 2secztanz dz
= ∫ 2tanz * 2secztanz dz
= 4∫ secz * (sec²z - 1) dz
= 4∫ sec³z dz - 4∫ secz dz
= 4 * 1/2 * (secztanz + ln|secz + tanz|) - 4ln|secz + tanz|
= 2secztanz - 2ln|secz + tanz| + C
= 2(x/2)√(x² - 4)/2 - 2ln|x/2 + √(x² - 4)/2| + C
= (x/2)√(x² - 4) - 2ln|x + √(x² - 4)| + 2ln2 + C
= (x/2)√(x² - 4) - 2ln|x + √(x² - 4) + C''
用余割方法:
令x = 2cscz,dx = - 2csczcotz dz,x > 2
∫ √(x² - 4) dx
= ∫ √(4csc²z - 4) * -2csczcotz dz
= ∫ 2cotz * -2csczcotz dz
= - 4∫ cscz * (csc²z - 1) dz
= 4∫ cscz dz - 4∫ csc³z dz
= - 4ln|cscz + cotz| - 4 * -1/2 * (csczcotz + ln|cscz + cotz|) + C
= -2ln|cscz + cotz| + 2csczcotz + C
= 2(x/2)√(x² - 4)/2 - 2ln|x/2 + √(x² - 4)/2| + C
= (x/2)√(x² - 4) - 2ln|x + √(x² - 4)| + C'''