证明:连接QB,OB.
∠PCO=∠PQC=90°;∠CPQ=∠OPC.则⊿PCO∽⊿PQC,PC/PQ=PO/PC,PC²=PQ*PO.
PC为切线,则:PC²=PA*PB.
∴PA*PB=PQ*PO,PA/PQ=PO/PB;又∠APQ=∠OPB.
则⊿APQ∽⊿OPB,∠PQA=∠PBO.------------------------------------(1)
同理可证:⊿OQC∽⊿OCP,可得:OC²=OQ*OP.则OB²=OQ*OP,OB/OQ=OP/OB.
又∠BOQ=∠POB,则⊿BOQ∽⊿POB,∠BQO=∠PBO.------------(2)
故:∠PQA=∠BQO.
所以∠AQC=∠BQC(等角的余角相等),即QC平分∠AQB.