证明:
根据题意,得
∠AOC
=180°-(∠OAC+∠OCA)
=180°-(1/2)(∠BAC+∠BCA)
=180°-(1/2)(180°-∠B)
=180°-(1/2)(180°-60°)
=120°
∴∠AOE=∠COD=180°-∠AOC=60°
过O作∠AOC的角平分线,与AC相交于F,则
∠COF=∠AOF=60°=∠AOE=∠COD
又∵∠OCD=∠OCF,OC=OC
∴△OCD≌△OCF(ASA)
∴CD=CF
同理,得
∵∠OAE=∠OAF,AO=AO
∴△OAE≌△OAF(ASA)
∴AE=AF
∴AE+CD=AF+CF=AC
∴CD =AC-AE
得证