因为 z²+z+1=0,所以 (z-1)(z²+z+1)=0,即 z³-1=0,从而 z³=1.
z^100+z^50
=z*z^99+z^2*z^48
=z*(z^3)^33+z^2*(z^3)^16
=z+z^2
=-1
即 z^100+z^50=-1.
因为 z²+z+1=0,所以 (z-1)(z²+z+1)=0,即 z³-1=0,从而 z³=1.
z^100+z^50
=z*z^99+z^2*z^48
=z*(z^3)^33+z^2*(z^3)^16
=z+z^2
=-1
即 z^100+z^50=-1.