定义在R上的偶函数f(x-2),当x>-2时,f(x)=ex+1-2(e为自然对数的底数),若存在k∈Z,使方程f(x)

1个回答

  • 解题思路:由偶函数f(x-2)可得函数y=f(x)的图象关于=-2对称,结合函数f(x)=ex+1-2在(-2,+∞)单调递增,且f(-1)<0,f(0)=e-2>0可知,函数f(x)=ex+1-2在(-1,0)上存在零点

    由函数图象的对称性可知,当x<-2时,存在唯一零点x∈(-5,-4),从而可求k

    ∵偶函数f(x-2)的图关于y轴对称

    ∴函数y=f(x)的图象关于x=-2对称

    ∵当x>-2时,f(x)=ex+1-2

    ∵f(x)=ex+1-2在(-2,+∞)单调递增,且f(-1)<0,f(0)=e-2>0

    由零点存在定理可知,函数f(x)=ex+1-2在(-1,0)上存在零点

    由函数图象的对称性可知,当x<-2时,存在唯一零点x∈(-4,-3)

    由题意方程f(x)=0的实数根x0∈(k-1,k),则k-1=-4或k-1=-1

    k=-3或k=0

    故选D

    点评:

    本题考点: 指数函数综合题;函数奇偶性的性质.

    考点点评: 本题考查的知识点是偶函数图象对称性质的应用,根的存在性及根的个数判断,方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键.