1.
a1+a3=2a2=8 a2=4
a2+a4=2a3=12 a3=6
d=a3-a2=6-4=2
a1=a2-d=4-2=2
an=a1+(n-1)d=2+2(n-1)=2n
数列{an}的通项公式为an=2n
2.
Sn=(a1+an)n/2=(2+2n)n/2=n(n+1)
a1、ak、S(k+2)成等比数列,则
ak²=a1·S(k+2)
(2k)²=2·(k+2)(k+2+1)
整理,得
k²-5k-6=0
(k+1)(k-6)=0
k=-1(舍去)或k=6
正整数k的值为6.
1.
a1+a3=2a2=8 a2=4
a2+a4=2a3=12 a3=6
d=a3-a2=6-4=2
a1=a2-d=4-2=2
an=a1+(n-1)d=2+2(n-1)=2n
数列{an}的通项公式为an=2n
2.
Sn=(a1+an)n/2=(2+2n)n/2=n(n+1)
a1、ak、S(k+2)成等比数列,则
ak²=a1·S(k+2)
(2k)²=2·(k+2)(k+2+1)
整理,得
k²-5k-6=0
(k+1)(k-6)=0
k=-1(舍去)或k=6
正整数k的值为6.