(1)
f(x1)=x1^2+a f(x2)=x2^2+a
f(x1)+f(x2)=x1^2+x2^2+2a
f((x1+x2)/2)=((x1+x2)/2)^2+a
1/2[f(x1)+f(x2)]-f((x1+x2)/2)=1/2(x1^2+x2^2)+a-a-((x1+x2)/2)^2
=1/2(x1^2+x2^2)-((x1+x2)/2)^2
=1/2(x1^2+x2^2-1/2(x^2+x^2+x1x2))
=1/4(x1^2+x2^2-2x1x2)
=1/4(x1-x2)^2>=0
所以1/2[f(x1)+f(x2)]>=f((x1+x2)/2)
(2)
lf(x)l=-1 且1+a