(1)∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE
∵
,∴∠DCA=∠BAE ∴△CAD∽△AEB
(2)过A作AH⊥BC于H
∵A是
中点,∴HC=HB=
BC
∵∠CAE=90°,∴AC 2=CH·CE=
BC·CE
(3)∵A是
中点,AB=2,∴AC=AB=2, ∵EM是⊙O的切线
∴EB·EC=EM 2①
∵AC 2=
BC·CE,BC·CE=8 ②
①+②得:EC(EB+BC)=17,∴EC 2=17
∵EC 2=AC 2+AE 2,∴AE=
∵△CAD∽△ABE,∴∠CAD=∠AEC
∴cot∠CAD=cot∠AEC=