双曲线y^2/b^2--x^2/a^2=1的一条渐近线为:y=bx/a
代人x^2/a^2+y^2/b^2=1得:
x^2/a^2+(bx/a)^2/b^2=1
2x^2/a^2=1
x=±√2a/2
|x1-x2|=√2a
MN=√(1+b^2/a^2)(x1-x2)^2
=√(a^2+b^2)(x1-x2)^2/a^2
=c|x1-x2|/a
=√2ac/a
=√2c
(c是双曲线的焦点横坐标)
双曲线y^2/b^2--x^2/a^2=1的一条渐近线为:y=bx/a
代人x^2/a^2+y^2/b^2=1得:
x^2/a^2+(bx/a)^2/b^2=1
2x^2/a^2=1
x=±√2a/2
|x1-x2|=√2a
MN=√(1+b^2/a^2)(x1-x2)^2
=√(a^2+b^2)(x1-x2)^2/a^2
=c|x1-x2|/a
=√2ac/a
=√2c
(c是双曲线的焦点横坐标)