BF=3a/4.
理由:
延长AE交BC延长线于G,
由AE平分∠DAF得:∠GAD=∠GAF,
∵ABCD是正方形,∴AD∥BC,∴∠GAD=∠G,
∴∠G=∠GAF,
∴FG=AF,
∵DE=CER,∠D=∠ECG=90°,∠AED=∠GEC,
∴ΔADE≌ΔGCE,
∴CG=AD=a
设BF=X,则CF=a-X,GF=2a-X,
在RTΔABF中,AF²=AB²+BF²,
(2a-x)²=a²+x²,
X=3a/4,
即BF=3a/4.
BF=3a/4.
理由:
延长AE交BC延长线于G,
由AE平分∠DAF得:∠GAD=∠GAF,
∵ABCD是正方形,∴AD∥BC,∴∠GAD=∠G,
∴∠G=∠GAF,
∴FG=AF,
∵DE=CER,∠D=∠ECG=90°,∠AED=∠GEC,
∴ΔADE≌ΔGCE,
∴CG=AD=a
设BF=X,则CF=a-X,GF=2a-X,
在RTΔABF中,AF²=AB²+BF²,
(2a-x)²=a²+x²,
X=3a/4,
即BF=3a/4.