x²+2x+2=6/(x+1)²
(x+1)²+1=6/(x+1)²
令t=(x+1)²,则:t≧0
原方程化为:t+1=6/t
t²+t-6=0
(t+3)(t-2)=0
t1=-3(舍去)t2=2
即:(x+1)²=2
x+1=±√2
x=-1±√2
即:x1=-1-√2,x2=-1+√2
x²+2x+2=6/(x+1)²
(x+1)²+1=6/(x+1)²
令t=(x+1)²,则:t≧0
原方程化为:t+1=6/t
t²+t-6=0
(t+3)(t-2)=0
t1=-3(舍去)t2=2
即:(x+1)²=2
x+1=±√2
x=-1±√2
即:x1=-1-√2,x2=-1+√2