设内切球球心为 O ,则 O 到三棱锥四个面中的任一个,距离为 R .
由 O 为顶点,分别以三棱锥的四个面为底面,得到四个小三棱锥,则高均为 R ,底面面积总和为 S ,体积和为 V .
V = V1 + V2 + V3 + V4
V = R*S1/3 + R*S2/3 + R*S3/3 + R*S4/3
V = R*S/3
所以 R = 3V/S .
设内切球球心为 O ,则 O 到三棱锥四个面中的任一个,距离为 R .
由 O 为顶点,分别以三棱锥的四个面为底面,得到四个小三棱锥,则高均为 R ,底面面积总和为 S ,体积和为 V .
V = V1 + V2 + V3 + V4
V = R*S1/3 + R*S2/3 + R*S3/3 + R*S4/3
V = R*S/3
所以 R = 3V/S .