a1=1,a2=2,且an+2=a(n+1)^2/an^2,求an.

4个回答

  • 1)2a(n+2)=an+a(n+1);

    ∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an];

    bn=a(n+1)-an;

    ∴2b(n+1)=-bn;

    即b(n+1)/bn=-1/2;

    ∴{bn}是等比数列;

    (2)b1=a2-a1=2-1=1;

    ∴{bn}是首项为1,公比为-1/2的等比数列;

    ∴bn=1×(-1/2)^(n-1);

    ∴a(n+1)-an=(-1/2)^(n-1);

    ∴an-a(n-1)=(-1/2)^(n-2);

    a(n-1)-a(n-1)=(-1/2)^(n-3);

    ……

    a2-a1=(-1/2)^0;

    累加得:an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)];

    ∴an=a1+(2/3)[1-(-1/2)^(n-1)]=5/3-(2/3)×(-1/2)^(n-1)=5/3+(1/3)×(-1/2)^(n-2)