3/(3-cosx)的不定积分怎么求

1个回答

  • 三角函数换元积分法,

    ∫3/(3-cosx) dx

    令p=tan(x/2),dx=2dp/(1+p²),cosx=(1-p²)/(1+p²)

    =3∫1/{3-[(1-p²)/(1+p²)]}*2/(1+p²) dp

    =6∫1/[3(1+p²)-(1-p²)] dp

    =3∫1/(1+2p²) dp

    令p=1/√2*tanθ,dp=1/√2*sec²θdθ

    =(3/√2)∫sec²θ/(1+2*1/2*tan²θ) dθ

    =(3/√2)∫dθ

    =(3/√2)θ+C

    =(3/√2)arctan(√2*p)+C

    =(3/√2)arctan[√2*tan(x/2)]+C