建造一个容积为8立方米、深为2米的长方体无盖水池.池底和池壁的造价每平方米分别为120元和80元.

4个回答

  • 不知道你有没有学过不等式,这里用到高中数学第二册(上)中《不等式》一章的《算术平均数与几何平均数》的知识.

    先为你介绍下列重要的不等式:

    如果a,b∈R,那么a²+b²≥2ab(当且仅当a=b时取“=”号).

    证明: a²+b²-2ab=(a-b) ²

    当a≠b时(a-b) ²>0,当a=b时(a-b) ²=0,所以

    (a-b) ²≥0

    即a²+b²≥2ab

    由上面的结论,我们又可得到:

    定理:如果a,b是正数,那么(a+b)/2≥√ab(当且仅当a=b时取“=”号).

    证明:∵(√a)² +(√b)²≥2√ab,

    ∴a+b≥2√ab

    即 (a+b)/2≥√ab

    显然,当且仅当a=b时,(a+b)/2=√ab.

    这里,我们称(a+b)/2为a,b的算术平均数,称√ab为a,b的几何平均数.因而,这一定理又可叙述为:两个正数的算术平均数小于它们的几何平均数.

    (关于这个定理还有一种几何解释,高中课本上同步介绍,我就不多加说明了.当然,如果你没有课本又想知道的话可以站短我.)

    解题关键是理解上述知识,理解了就好办了.下面是解题步骤:

    设水池底面一边的长度为x米,则另一边的长度为8/2x米,又设水池的总造价为w元,根据题意,得

    w=120×(8/2)+80{2×2x+2×2×(8/2x)}

    =480+320{x+(4/x)}

    ≥480+320×2√{x×(4/x)}

    =480+320×2×2=1760.

    当x=4/x,即x=2时,w有最小值1760.

    因此,当水池的底面是边长为2米的正方形时,水池的总造价最低,最低总造价是1760元.

    (注:“√”为根号,“/”为分数线)

    因为我没有专业的编辑器,所以打不出平时书写的样式.故在书写的时候要注意根号、分数、括号的更改.有不理解的地方再问问.

    如果你还没有学到高中不等式,就按照•Dandelion同学所回答的解法来解题吧.虽然高中知识逻辑性更强,更能解释“为什么”,但高中一些知识对初中生来说很难理解.实际上我在初中时就碰到过类似问题,当时老师只解释底面为正方形,比底面为长方形时面积小,因此造价就低,这可以通过假设比较来证明,自己试一下就能证明出来.

    你根据实际情况来决定吧.

相关问题