tan(pie/4+1/x)=(1+tan1/x)/(1-tan1/x)
令t=1/x;则t趋向于0
lim(t→0)[(1+tant)/(1-tant)]^1/t
=lim(t→0)[1+2tant/(1-tant)]^{[(1-tant)/2tant]*2tant/(1-tant)*1/t}
=e^{2tant/(1-tant)*1/t}
=e^{2t/t(1-tant)}
=e^{2/(1-tant)}
=e^2
tan(pie/4+1/x)=(1+tan1/x)/(1-tan1/x)
令t=1/x;则t趋向于0
lim(t→0)[(1+tant)/(1-tant)]^1/t
=lim(t→0)[1+2tant/(1-tant)]^{[(1-tant)/2tant]*2tant/(1-tant)*1/t}
=e^{2tant/(1-tant)*1/t}
=e^{2t/t(1-tant)}
=e^{2/(1-tant)}
=e^2