(1)∵f(x)=(x3-6x2+3x+t)ex,
∴f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t+3)ex.
又∵a,b,c是f(x)的三个极值点,
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)
=x3-(a+b+c)x2+(ab+bc+ac)x-abc
∴
a+b+c=3
ab+ac+bc=?9
t+3=?abc
a+c=2b.
解得,b=1,ac=-11.t=8.
∴t=8.
(2)不等式 f(x)≤x,即(x3-6x2+3x+t)ex≤x,
即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],
不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立.
设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6.
设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0.
故r(x)在区间[1,m]上是减函数.
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ'(x0)=0.
当1≤x<x0时,有φ'(x)>0,当x>x0时,有φ'(x)<0.
从而y=φ(x)在区间[1,x0]上递增,在区间[x0,+∞)上递减.
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,φ(5)=e-5+2>0,
φ(6)=e-6-3<0.
所以当1≤x≤5时,恒有φ(x)>0;
当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.