1)
证明:
因为∠acb=90°,∠CED=90°,∠CFD=90°
所以四边形DECF是矩形
因为cd平分∠acb,DE⊥BC,DF⊥AC
所以DE=DF
(角平分线上的点到角的两边的距离相等)
所以四边形DECF是正方形
(一组邻边相等的矩形是正方形)
2)
设正方形边长为X
则AF=6-X
因为DF/BC=AF/AC
所以X/8=(6-X)/6
解得X=24/7
所以四边形DECF的面积=(24/7)^2=576/49(平方厘米)
1)
证明:
因为∠acb=90°,∠CED=90°,∠CFD=90°
所以四边形DECF是矩形
因为cd平分∠acb,DE⊥BC,DF⊥AC
所以DE=DF
(角平分线上的点到角的两边的距离相等)
所以四边形DECF是正方形
(一组邻边相等的矩形是正方形)
2)
设正方形边长为X
则AF=6-X
因为DF/BC=AF/AC
所以X/8=(6-X)/6
解得X=24/7
所以四边形DECF的面积=(24/7)^2=576/49(平方厘米)