(1)①∵AB=AC,AD是BC边上的中线,
∴AD⊥BC,∠CAD=∠BAD,(等腰三角形三线合一)
∵∠BAD=20°,
∴∠CAD=20°,
∴∠C=90°-∠CAD=90°-20°=70°;
②∵AD⊥BC,EF⊥AB,BG平分∠ABC,
∴EF=ED;
(2)①∵ED垂直平分AC,
∴AE=CE,
∴∠ECD=∠A,
∵∠A=36°,
∴∠ECD=36°;
②∵AB=AC,∠A=36°,
∴∠B=[1/2](180°-36°)=72°,
∵∠ECD=∠A=36°,
∴∠BEC=∠ECD+∠A=36°+36°=72°,
∴∠B=∠BEC,
∴BC=CE,
∵CE=5,
∴BC=5.