f'(x)=2x+2ax+b
f'(1)=2+2a+b=3,得:2a+b=1
f(1)=1+a+b+c
切线为y=3(x-1)+1+a+b+c=3x+a+b+c-2
不经过第4象限,则有a+b+c-2>0
原点到切线距离=|a+b+c-2|/√10=√10/10,即a+b+c-2=1,得:a+b+c=3
x=2/3时,f(x)有极值,即f'(2/3)=4/3+4a/3+b=0,得:4a+3b=-4
联立解得:a=3.5,b=-6,c=5.5
2) f(x)=4.5x^2-6x+5.5,开口向上,对称轴为x=3/4.5=2/3
故最小值为f(2/3)=4.5*4/9-6*2/3+5.5=3.5
最大值为f(-3)=4.5*9-6*3+5.5=28