f(x+1)=x²+x+1
设x+1=t,则x=t-1
∴f(t)=f(x+1)=x²+x+1
=(t-1)²+(t-1)+1
=t²-t+1
将t换成x
得到f(x)=x²-x+1
配方:f(x)=(x-1/2)²+3/4
∵x∈[0,2]
∴f(x)min=f(1/2)=3/4
f(x)max=f(2)=3
f(x+1)=x²+x+1
设x+1=t,则x=t-1
∴f(t)=f(x+1)=x²+x+1
=(t-1)²+(t-1)+1
=t²-t+1
将t换成x
得到f(x)=x²-x+1
配方:f(x)=(x-1/2)²+3/4
∵x∈[0,2]
∴f(x)min=f(1/2)=3/4
f(x)max=f(2)=3