使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1%A∫∫∫xydv=∫(0→π/2) dθ ∫(0→1) ρdρ ∫(0→1) ρ^2%Asinθcosθ dz%A=∫(0→π/2) dθ ∫(0→1) ρ^3sinθcosθ dρ%A=1/4×∫(0→π/2) sinθcosθ dθ%A=1/8
用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积
1个回答
相关问题
-
计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域
-
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域
-
柱面坐标 积分 求体积 用柱面坐标 求 由z=y平面 与 抛物面z=x^2+y^2 所围成的体积ρ是什么?r么?dz 积
-
计算三重积分∫∫∫2dxdydz,(Ω在∫∫∫下方),其中Ω为三个坐标及平面x+y+z=1所围
-
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
-
设Ω由平面z=1及z=x^2+y^2围成,计算三重积分∫∫∫zdxdydz
-
求助三重积分计算下列三重积分fffzdxdydz,其中Ω是由平面x=0,y=0,z=0和x+y+z=1所围成的有界闭区域
-
【三重积分】∫∫∫=√(x^2+y^2)dv,其中Ω是曲面z=x^2+y^2,和平面z=1所围的立体.
-
求∫∫∫xydxdydz的值,其中Ω为柱面x²+y²=1及平面z=1,z=0,x=0,y=0,围城的
-
三重积分计算:计算 ∫∫∫Ω√x²+y²+z² * dv ,其中Ω:x²+y