数论急求,在线等,有追加:假设p是一个奇素数.证明同余方程x^4≡-1(mod p)有解当且仅当p形如8k+1

1个回答

  • 很显然这是一道原根题.设g为p的一个原根,那么p的简化剩余系可表示为g^0,g^1,g^2,...,g^phi(p).当然还有个小地方没解释,这个同余方程的解肯定是在p的简化剩余系中的,我想这个你要是也不知道的话估计更不知道什么是原根了,你自己想哦.方程转化为(g^i)^4≡-1.而-1在原根中的唯一表示是g^(phi(p)/2).那么方程再次转化为(g^i)^4≡g^(phi(p)/2).由原根指数的性质知:4i≡phi(p)/2(mod phi(p)).这样就证明了8|phi(p),那么p就有形如8k+1了.呵呵