a-b=c(cosB-cosA)
正弦定理
a/sinA=b/sinB=c/sinC=2R,R为外接圆半径
所以
2R(sinA-sinB)=2RsinC(cosB-cosA)
sinA-sinB=sinC(cosB-cosA)
2cos[(A+B)/2]sin[(A-B)/2]=-4sinCsin[(A+B)/2]sin[(B-A)/2]
cos[(180-C)/2]=2sinCsin[(180-C)/2]
cos(90-C/2)=2sinCsin(90-C/2)
sinC=2sinCcos(C/2)
cos(C/2)=1/2
C/2=60
C=120度
那么三角形ABC是钝角三角形